Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo–Christov flux

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional diffusion on a fractal grid comb.

A grid comb model is a generalization of the well known comb model, and it consists of N backbones. For N=1 the system reduces to the comb model where subdiffusion takes place with the transport exponent 1/2. We present an exact analytical evaluation of the transport exponent of anomalous diffusion for finite and infinite number of backbones. We show that for an arbitrarily large but finite num...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Fractional Calculus, Anomalous Diffusion, and Probability

Ideas from probability can be very useful to understand and motivate fractional calculus models for anomalous diffusion. Fractional derivatives in space are related to long particle jumps. Fractional time derivatives code particle sticking and trapping. This probabilistic point of view also leads to some interesting extensions, including vector fractional derivatives, and tempered fractional de...

متن کامل

Investigating the interplay between mechanisms of anomalous diffusion via fractional Brownian walks on a comb-like structure

The comb model is a simplified description for anomalous diffusion under geometric constraints. It represents particles spreading out in a two-dimensional space where the motions in the x-direction are allowed only when the y coordinate of the particle is zero. Here, we propose an extension for the comb model via Langevin-like equations driven by fractional Gaussian noises (longrange correlated...

متن کامل

The Role of Fractional Time-Derivative Operators on Anomalous Diffusion

The generalized diffusion equations with fractional order derivatives have shown be quite efficient to describe the diffusion in complex systems, with the advantage of producing exact expressions for the underlying diffusive properties. Recently, researchers have proposed different fractional-time operators (namely: the Caputo-Fabrizio and Atangana-Baleanu) which, differently from the well-know...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Nonlinear Science and Numerical Simulation

سال: 2016

ISSN: 1007-5704

DOI: 10.1016/j.cnsns.2016.02.009